Nonbinary quantum error-correcting codes from algebraic curves
نویسندگان
چکیده
منابع مشابه
Nonbinary quantum error-correcting codes from algebraic curves
We give a generalized CSS construction for nonbinary quantum error-correcting codes. Using this we construct nonbinary quantum stabilizer codes from algebraic curves. We also give asymptotically good nonbinary quantum codes from a GarciaStichtenoth tower of function fields which are constructible in polynomial time. keywords Algebraic geometric codes, nonbinary quantum codes.
متن کاملQuantum error-correcting codes from algebraic curves
This chapter discusses quantum error-correcting codes constructed from algebraic curves. We give an introduction to quantum coding theory including bounds on quantum codes. We describe stabilizer codes which are the quantum analog of classical linear codes and discuss the binary and q-ary CSS construction. Then we focus on quantum codes from algebraic curves including the projective line, Hermi...
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملSome good quantum error-correcting codes from algebraic-Geometric codes
It is shown that the quantum error-correction can be acheived by the using of classical binary codes or additive codes over F4 (see [1],[2],[3]). In this paper with the help of some algebraic techniques the theory of algebraic-geometric codes is used to construct asymptotically good family of quantum error-correcting codes and other classes of good quantum error-correcting codes. Our results ar...
متن کاملQuantum Error Correcting Codes
This thesis deals with quantum error correcting codes. In first two chapters necessary introduction to quantum computation and classical error correction is presented. Previous results on construction of quantum error correcting codes are presented in the third and fourth chapter. Mainly Calderbank-Steane-Shor (CSS) codes and stabilizer codes are discussed together with the introduction to codi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.08.038